An Analysis of Curvature Sensing for
Large Aperture Adaptive Optics Systems

Mark Milman
David Redding
Laura Needels

Jet Propulsion Laboratory
Cdlifornia Institute of Technology
Pasadena, CA 91109

Abstract

This paper presents analysis of the curvature sensing method and the associated wavefront réconstruction
problem for adaptive optics applications to telescopes with large aperture. The analysis includes characteri-
zations of the nonlinear, diffraction, and noise effects for curvature sensing. A comparison of reconstruction
performance for curvature and slope sensing is also presented. Simulations based on the optical prescription
of the Keck telescope are used to verify the analysis.



0. Introduction. Adaptive optics systems are based on sampling the wavefront entering the telescope
pupil, and then quickly restoring the aberrated wave to its unaberrated planar state by a corrective optical
element. A key component of this process is the measurement and reconstruction of the wave front. Because
wavefront measurement devices do not directly measure the phase, but typically some derivative of it, the
estimation (or reconstruction) of the phase from these relative measurements is necesary. Many successful
AQ systems have already been developed using slope measurements of the wavefront obtained by Shack-
Hartmann or shearing interferometry. More recently, successful implementations of low order AO systems
employing the method of curvature sensing have been made [12]. This paper presents analysis of the curvature
sensing method and the associated wavefront reconstruction problem with particular attention towards
application to large aperture tel escopes.

Methods of curvature sensing using intensity measurements to approximate the Laplacian are described
in the papers [6], [1 O], [11], [16], [17]. Here we will analyze some of the properties of the curvature sensing
scheme with particular emphasis on the method as devised by Roddier and coworkers [11]. The analysis
presented includes nonlinear, diffraction, and noise effects for curvature sensing. We also briefly discuss
its viability as a method for estimating the wavefront normal derivative. The ability to perform this latter
function is important from the perspective of the sensor operating as a total stand-alone measurement device
since the reconstruction of the wavefront from curvature measurements also requires measurements of the
normal derivative. Having both the Laplacian and normal derivative on the boundary is required for posing
the standard Neumann problem that arises in connection with wavefront reconstruction. A comparison of
reconstruction performance for curvature and slope sensing is presented.

Briefly, the method of curvature sensing relics on forming a normalized difference of intensities in two *
planes symmetrically displaced from the focal plane. Using a Fresnel propagation analysis, and with several
approximations, including “seeing” condition assumptions, the irradiance transport equation is derived. The
irradiance transport equation is essentially a hydrodynamic model describing the evolution of the intensity of
the wavefront in the direction of propagation. The derivative of the intensity in the direction of propagation
is shown to be proportional to the Laplacian of the wavefront surface. Thus intensity measurements in
displaced planes normal to the propagation provide a finite difference approximation to the differential
intensity, and hence to the wavefront Laplacian.

Within a geometric model of intensity propagation [2] it is shown that the nonlinearities of the sensor
can be characterized through the Gaussian curvature of the wavefront [8]. The scale of this nonlinearity
grows with the sensitivity of the measurement. An expression characterizing the balance between the sensor
nonlinearity and noise characteristics is derived. It is shown that diffraction eflects can be incorporated via
a convolution of the curvature signal with certain impulse response functions of the telescope. For large
aperture systems these effects are relative] y benign, although simulation and analysis indicate that they do
have impact in the neighborhood of obscurations and and at the pupil edges. The analysis of radialderivative
measurements obtained by intensity measurements indicates that it is susceptible to nonlinearities and noise
effects. This measurement is concluded to be somewhat inferior to a Hartmann Sensor measurement.

Reconstruction error covariance matrices are developed for both slope sensing and curvature sensing.
Covariance matrices of the reconstruction error for both sensing methods are developed. For the case of
square arrays analytic expressions are given for the reconstructed wavefront variance. It is shown that these
variances are determined from the eigenvalues of the Laplacian operator discretized by a 5—point scheme
over the array. Because these eigenvalues are known for the square geometry, the variances can be simply
calculated and comparisons can be made between curvature and slope sensing performance. The results
comparing these sensing methods are somewhat contrary to those previously reported [11], [13], [14]. It was
observed in numerical studies that although the Hartmann sensor estimation error was superior to curvature
sensor estimation error, curvature sensing compared more favorably as the number of sensors increased as
opposed to decreased, as has been reported in these references. This phenomenon is explained in terms of
the accuracy (in the sense that the Laplacian is a second order measurement while the gradient is a first
order measurement ) of the two sensing methods, and an asymptotic expression is given for the estimation
variance for both schemes.

1. Nonlinear Geometric Analysis. Consider the diagram below. Here » represents a fixed plane
transverse to the direction of propagation, and Ps are parallel planes displaced a distance e from P. The
function w represents the wave front error function, the deviation of the wave front from being a plane wave .
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Figure 1.1. Geometric Intensity Propagation

propagating in the z— direction. Let Io(z, ) denote the intensity of the signal at a point (z,y) € P.
From geometric optics, the intensity I, at a point (z4+,y+) € Pi displaced a distance +¢ along the normal
to the wavefront surface is given by
1o
L =1zarv e (LD

where H and K are the mean and Gaussian curvatures of the surface, respectively,

e, 12
H= Y DK YWy [ w]__. (1.2)

1/1+wz+w2 1+ wk+ w?

Here Aw denotes the Laplacian, Aw = w,., + wy,. Expression (1.1) can be deduced from the geometric
intensity propagation results in [2] together with the classical formulas for mean and Gaussian curvature

givenin [8]. Define the normalized difference Q as

1, -1
Q- I: + | (1.3)
Now, I;—1I_is easily computed to be
1 1
1. = I
Lo-bo= Il ek Ty v ax) 1.4
4]JocH '

"1 —42H? 4 28K + 4K?'

Similarly we find that
2Ip(1 + 2K)

1-4c2H? + 9¢2)¢ + 4K2°

I+ +]-=

Hence,
2¢H (1.6),

C T1l+e2K

Equation (1.1) holds so long as 1 F2¢H +¢2K < 0. (This condition essentially precludes caustics.) Thus,
the expression for Q above is valid under the same condition. Note that ase— O, Q/c’'4 2H. And since
I, +1. = 2Ip + O(c?), it follows that

I, -1

lim o Ts = 2H. (1.7)
But I |

lim == VI. n,
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where )
["w-'m —Wy, 1]1

o - 41+ wi4w?

is the unit normal to the wavefront surface. Thus after imposing the paraxial assumption

ow,  Ow
5 b 15,1 << 1
wc obtain a1
- = VI, Vw +2IpH.
Oz
And since the paraxial assumption also implies H ~ Aw/2, the transport equation
%:VI.Vw-}—Io/_\w. (1.8)

is obtained. The transport equation aboveis also valid under paraxial physical optics assumptions[17].

The sensor signal Q is typically modeled not by (1.6) but by the transport equation (1.8)} and the
validity of the model requires a“small” displacement between the planes where the intensity measurements
arc taken. It will be seen that instrument sensitivity requires a “large” displacement between these planes.

This has two eflects. First, the nonlinearities become more significant and the transport model (1.8) looses
validity. And second, the role of diffraction becomes more dominant in the actual instrumentation setup. .

Here wc will usc (1.6) as the departure point for the subsequent analysis. The analysis will begin from a
geometric optics perspective with the nonlinearities described above, and then noise and diffraction effects
will be included. We will proceed here by analyzing the Roddier set—up [10]. The model for this approach
is shown below in Figure 3.2.
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Figure 1.2. Geometric Intensity Propogation in Instrument

Here F denotes the focal plane, F; is the image plane associated with the object plane O, and F- is
an “image” plane associated with an object plane O’. The planes F. and F; are both a distance 1 from
the focal plane F. Let (z, y) be a point in the pupil plane P and let n denote the normal derivative to the
wavefront in the direction of propagation,

n = ["wz; "'wy) l]T
‘ J1+wi+ ws
Let (0, 1) denote the point in the plane O that contains the light ray through (z, y). The coordinates

of (o, wo) arc l l
f(fl+ )wz‘y+f(flf )wv)_

(3:013/0) = (z +
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Let p,; denote the distance between the points (cc,, %) € O and (z, y) € P:

_IU+D
l

P4 14 w2 + w.
Then using geometric optics [Born], the intensity at (zo,¥0) is

I(z,y) 1.9
14 2p4 Hy + p2 Ky’ (L9)

I(xO’ yO) =

where H,, and K, are the mean and Gaussian curvatures of the wavefront, respectively, and I(z,y) is the
intensity at (z, y). Next let (z,, y+ ) denote the Gaussian image of (zo,%0). Then

(@4, 94) = (~Iz/f (o Duwa, ~ly7f —(f + Dw,). (1.10)
Also, the intensity at (z,, ¥+ )is given by
Ii(zy,y4) = (%)2](20’3/0)

1(X, y) (1.12)
T (n20+ MAw -t ﬂi{;’—‘—)ﬁ(wnww - [wey)?)}

The expression above describes the intensity in the image plane F. predicted by geometric optics. Next we
will derive the intensity in the plane F— under the same approximations.
Note that the wavefront emerging from the entrance pupil is given by

2 4 .2
B(z,y) = wiz,y) + %ji. (1.12)

Tracing the ray through (z, y) to the plane F_, we find that it pierces this plane at (z-, y-),

(z—, y*-):(x -0 - )iz, Yy - (f - l)ﬂ)ll) (113)
= (z/f - (f=Dwz, /S - (| - Dwy).

Consequently, the intensity at (z.., y- ) isgiven by.

_ 1(Z, y)
@y ) = T it 2 Ka (1.14)

where p-=(j = 1) \/1 + @2 + w2, and Hg and Ky are the mean and Gaussian curvatures of the wavefront

w. But now note that
Aw+2/f

J1+@2 402

1 I 2
m{wn%y -~ [wzy)°}

1
1+u";3+1b§{

] [ .
Tz g (e ~lwal’l+ 157 + Ay 1)

2H,, =

Kg=

i

(wez + 1/f)(wyy +1/1) [wzy)?}

i

5




Hence,

_ I(z,y) <
o) = T D Gw T 27 T 020/ 7% Bw]T T wamingy — ey
— 1(z,9) 4 v 1.15
A== DD+ - Ddw((J = /]~ D+~ Plwgawy — [wmgly  119)
1(z,9) :

T I 1T~ Ddw]i+ F2f — 12/ P {umzwyy — w2}
Thus we may compute the normalized intensity difference as
Li(zy,94) ~1-(z-,9-) :,ﬁ{—zAw + Slwzawyy - [wey)?]}
L@y yy) + 1 (z-,y-)2 + 2fAw + {;[(} + 12 + (f = D?)[wzzwyy — [wey)?] ¢
Lett = f2/1, and assume 1<< j. Then the expression above can be written as

Li(zy,ys) —1-(z—, y-) _ AW + I [weawyy — [wey]*]/f
Li(z+,y4) +1-(z—,y-) 1+ UAw/ ]+ t2[wepwyy — [wey)]?] "

For the scale and type of aberrations of interest for the Keck telescope application we will typically have

2 [wezwyy - [wsy))l = tAw]; 1/j<< 107

Hence wc have approximately

14($+',y4)—]—($_,y_) o —tAw (116)

Li(zy,y1)+1-(z-,y-)  1+12K, '
Note first that even if intensity measurements are taken along the normal to the wavefront, a nonlinearity
involving the Gaussian curvature K,, of the wavefront is encountered. Furthermore, unless Vw = O, an
additional nonlinearity emerges since (x..,y_) #- (z4, y4 ). However, this latter error can be shown to be

negligible [7].

2. Noise Effects, Assume a sensor integration time of AT seconds, and let A denote the area of the
detector element, in the planes F_ and ;. The number of photons captured by these detectors over the
period AT is modeled as independent Poisson processes N, and N_ with means N, and N—, respectively.
The mean signal intensities in the two planes are then

I Ny
*ATA
Let o= (I, +1. )/2, and define the random variable $ by
A NJo—N_
*T 2L ATA ¢ 21
Then Sis an estimate of the normalized intensity difference with mean
N S &
E(S] Ly (2.2)
and variance (using N, are Poisson)
, & _ N\ 2 — f N+»N—-—(N'+»N‘) 2 ”
B[S - BOP) = E(——F—F })
1 _ _ _ _
=-———— _F{(N;,—Ny)?*+ (N_-N_)®> + 2(N,— N})(N_ - N_
g oy A = )+ ( P+ 2(N.— Ny)( LA

1
- (WIN+ P
1
—N++N._' "




Write ¢ for the nonlinear terms in (1,16). Observe that

AWK,

and consequent] y .
Aw = E(8/t) + ¢/1.
Now define the random variable 5 = $/t -~ E(8/t). The measured signal derived from (2.1) is
y= 8/t

Thus Wc can write . . N
y== B($/t)+[8/t- B(S/1)

=Aw+¢/t+7h (24)
~ Aw - t?2AwK,,
- 1+ 2K,

with E(n) = O and E(5?) = 1/t*(N; + N_ ).Hence the balance that must be maintained is to keep the noise
level small by choosing ¢ to be as large as possible, while keeping the nonlinearities at bay with ¢ sufficiently
small.

3. Diffraction Effects. Now we will move on to’ how diffraction affects the curvature measurement.
Recall that the impulse response h,(z) between the object plane O and image plane F; is computed as the
response at z in the image coordinates to a point source located at the origin in the object plane [4]. The
point source givesrise to a diverging spherical wave at the entrance pupil. Diffraction effects in the planes

¢ will be modeled in this fashion.

Again let I{z,y) denote the intensity in the entrance pupil. The complex amplitude U+ in the object
plane Oat the point (zo, o) is given as (cf (1.9))

U (0, %) = VI(zo,yo)e?* Fove), (3.1)

where I(zo, 30) is given by (1.9) and ¢, is the phase calculated from the phase at (z, ¥) using the distance
function p,4. With the assumption that the intensity is constant in the entrance pupil, I(z, y) = Ip, we get
upon retaining the first order terms in the binomial expansion of (1 .9)

Ut o, %) - VIo{1 —ps H - p% K/2)e**. (3.2)

“The amplitude in F.,is obtained by convolving the complex amplitude obtained by the geometric optics
prediction U, (£,y) = {U* (- f=/1, fy/1), with the impul se response to obtain

Ur, (2,4) = /E hy@—7,y - Y)W (o' )de'dy, (33)
+

where ¥, is the support of U,. (Thisis the set where U, is nonzero. In this way we will be able to account
for obscurations.) The approximation made here is the use of geometric optics propagation between the
planes O and P. *

Diffraction effects in the plane F. can be computed in a similar manner. To see this observe that the
impulse response h; can be interpreted as the response to a diverging spherical wave in the entrance pupil
with aradius of curvature given by the distance dp from the point source to the pupil. Suppose instead we
compute the response of a converging spherical wave in the entrance pupil. This converging spherical wave
can be thought of as being produced by a point source in the virtual object plane O’ located a distance dy:
from the pupil plane satisfying the lens condition

1 1 1 ‘
(f—l)+do, 7 0. (3.4)
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This interpretation gives rise to the impulse response h- computed in exactly the same manner as h, (see
[3, 8]), with the exception that dy is a negative quantity because 1>0 above.

Using the same approximations in computing the diffraction effects in the plane F., the complex am-
plitudein F_ is then computed by geometrically propagating the wavefront w(zx, y) to the object plane O’
and convolving with the impulse response h_,

Ur (z,9) = h_ (@ - 2,y - Y)- (@ )d'dy, (35)
where U- (z, y) is the amplitude predicted by geometric optics

u_(Z,v) =§U-.(_ Jz/Lfy/l) and U (zo, %) = VIo{1 -t p_H - p2 K/2}e?-,
and X_ is the support of U_.

Writing the integrals in (3.3) and (3.5) as the convolutions hy* U,and h_  U_, respectively, the
intensitiesin Fy arethen |hy * Uy |2, and the curvature signal Q, including the effects of diflraction, is given
as

lhy ¥ Uy |? - | U_|?
© 7 Ry x Uy 2~ fho x U-J?

Before carrying these computations forward, we will make some simplifying assumptions and introduce
some useful notation. First, with the assumption 1<< f, we may assume h,~h_and write h, = h_=h.
This assumption also implies that p, =~ p_, and we will accordingly write p, = p_ =1 = /2/1. Another
assumption that wc shall make is that the support of the impulse response h is much smaller than the quantity
Tel/j where r. denotes the atmosphere coherence length. Taking D to denote the telescope diameter, and A
as the operating wavelength, this assumption is equivalent to requiring

(36)

A
—_— . 3.7
Dr <<l (3.7)

As shown below, this éssumpti on alows us to ignore the phase terms ¢, in the computations of the intensities.
First wc introduce the functions a, b defined as

o= L Vil - k), b = LT, (39)
so that
Uy = [a F bje . (3.9)

The intensity at a point « € F; can now be expressed as

(R*UD)@P = | hiu —v)a(w)-b@)e?* Pdv [ hlu ~v [a@") - bv"))e ¢+ v’
/F* /F* (3.10)

~ e @) ) [ k= o)fals) - by /F Ru — o')[a(e) - B("))dv,

where the overbar denotes complex conjugation. The phase terms are seen to cancel and the intensity at u
is independent of the phase. The same result holds for |k« U_|2.

If in addition the pupil function is radially symmetric, h becomes real, and we can ignore taking complex
conjugates above. We will make this assumption in what follows. (This assumption simplifies the notation,
but has little effect on the analysis.)

Now we introduce the sets

L= Iyn T, B =¥;-X., E=Y -%,. (3.11)

8



Let x denote the characteristic function of a set, i.e., X(S)(Z) = 1if z € S, and zero otherwise. Fori= 1,23
we let a;(u) = U p and bi(u) =blu)x(E;)(u). With this notation and the various approximations
made, (3.6) becomes

N

Q=5 (312)
where A
N =4(h* a))(h* b))+ 2[R * (a1 + by)}[h * (a2 + by)} + [ * (az + b2))?
- 2lh % (a; - by)][h * (a3 - b3)] — [h * (a3 — b3)]?,
and

D =2hxa )2+ 2hxb1)*+ [h* (a2 + by))? + [h # (a3~ b3))?
4 2[h % (a1 + by))[h * (@2 + b2)] + 2]k % (a3 — b1)]lh * (a3 - b3)).

For points far removed from the pupil edges or obscurations (i.e, well within the interior of 1), we can
ignore the contribution to the signal made by the sets 22 and 35 and obtain

2(h* ay)(h* by)

R~ (h*a1)?2+4 (hxb)? (313

Recalling the definitions of a; and b (ef (3.8) and (3.11))), and ignoring higher order terms,

 oh* 1)k H)
QN v )2+ (h+ 1)(h+ PK)

_ th « Aw

T (h*x 1)+ (hxt2K)’

(3.14)

Finally, introducing the notation
(3.15)

sothat 2 * 1= 1, we obtain the result (for points removed from edges and obscuration)

0~ th *Al)

~ T e . (3 .
14t2hx K

For these points it is seen that the curvature signal is characterized by convolving the individual terms of
the geometric model with the point spread function of the instrument. For systems with large aperture, his
an approximate é function, and wc recover the geometric model.

Modifying the sensor model to include diffraction effects is straightforward. For points in the interior of
£1, the estimator is not estimating the Laplacian of the wavefront, Aw, but the convolution of the Laplacian
with the normalized point spread function of the instrument. Thus the model becomes

y=hxAw+hxp+1, (3.17)

where * again denotes convolution, and 4 and i are the nonlinear and noise terms from (2.4). Closer to the
boundaries of the obscurations and pupil edges the full quotient model (3.12) must be used.

An Example. Thus far we have developed how intensity measurements lead to estimates of wavefront
curvature and radial tilt. We will now consider some examples using low order Zernike aberrations.
The Zernike polynomial for tilt is

w(z, y) :% (or z= —}%coso in polar coordinates); R=pupil radius.

Hence,

16)



and
cosl

< Vw,n>= N

The zero Laplacian of tilt is captured by the intensity signal in Figures 3.1a-3.1 c. In each of these figures
we chose the displacement 1 from focus to be .05m, and the focal length of the system as f=150m. Thus
t =4.5x 10°m. Figure 8.1a contains the Keck prescription without central obscuration from the secondary
mirror. The magnitude of the signal increases to unity at the edge of the pupil. Figures 3.1 b-3.1 c contain
the signal with obscuration. There is more ringing to the signal in these cases because of the diffraction
contribution of the secondary mirror. The signal in the center for Figures 3.1b-3.1¢ is due entirely to
diffraction. Because the aberration consists of an z— axis tilt, the terms containing the Laplacian and
Gaussian curvature in (3.12) disappear. Along the y— axis we would expect the signal to diminish in the
obscured region because the terms in the numerator cancel. Thisis precisely the case as can be observed in

Figure 3.1c.

10




1 T T T T T T T T

0.8} /\

0.6]-

04|

02|

-0.2

-0.4

-0.6

-0.6

L )

0 5 1 15 2 25 3 35 4
Figure 8.1a.z- tilt Laplacian (no obscuration), z_ axis dice

]

0.3} o
0.6+
04}
0.2} e
ot
-0.2F

04F

0.6+

-0.8F

-1 ol I

05 1 15 2 25 3 35 4 .
Figure 8.1b.z- tilt Laplacian (with secondary obscuration), z— axis slice

11’




01t

0.051

o

-0.05}

=01 0 0.5 1 15 2 25 3 35 4 5

Figure 3. Ic. z~ tilt Laplacian (with secondary obscuration), y— axis slice
The Zernike polynomial for defocus is given by
Wz, y) = 2(=)+ 2(%)2 — 1; R=pupil radius

Thus with a coefficient of ¢ multiplying the defocus term, the resulting Laplacian and radial tilt are

cAw = %%,
e <V >= 4
€ w,n >= R
respectivel Y.
The geometric curvature signal for defocus is given by
2
]4 ((E, Y) -1- (1;1 y) _ —-4_[%(7]

L@,y + I-(z,y) 14 (L2384

The nonlinearity introduced by the Gaussian curvature term in the denominator is seen in the simulations by
comparing intensities from the normalized intensity maps as the image planes are moved closer to focus (Figs.
3.2a-3 .2¢). Theintensities increase sublinearly because of this term. Table 3.1 summarizes the value of the
curvature signal for these cases using the linear model (1.8), nonlinear model (1.6), and simulated intensities
(including diffraction effects.) It is seen that as 1 decreases the linear model becomes quite inaccurate, while
the nonlinear model retains good fidelity with the simulated intensities.

Table 3.1 Sublinearity of curvature mecasurements

1 25mm 50mm 100mm
Linear 29 .58 1,16
Geometric .28 .53 .86
Simulation .28 %\ .87
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4. Radial Derivat ive from Intensity Measurements. The problem of wavefront reconstruction
from intensity measurements requires a measurement of the boundary slope. Here wc will briefly describe
how the intensity distribution can provide information regarding the normal derivative of the wavefront on
the boundary. This will be done from a geometrical optics perspective, however diffraction effects can be
accommodated via (3.1 2). (A more detailed analysis of boundary slope determination can be found in [7].)

Let F denote the pupil, and P denote the pupil including its boundary, 8P. Given a point (z, y) € P,
with wavefront (X, v, W (X, )), rays are propagated to the object planes O and O’ by the transformations

T (@9 (@ 9) + (5 5.

Introducing unit vectors in the radial and tangential directions, «, and u,, respectively, the transformations
above are written as 1

R

where R denotes the aperture radius. From this we see that diflerentiall y the transformations 74 consist of
arotation, via u,, and aradial transation, via u,. To compute the effect on the boundaries T3 (8P) fix o
and define

Ty(z,Y) = (z,y) £t < Vw, 4, > ur+ <= Vw, u; > uy,

0y = bo Fi?2< Vw(R, b)), W >

Now observe that to first order
T:i (R) oi) = (Rﬂ ’00))

where
Ry =+t < Vw(0i), ’U.R(ei ) >

So to first order
R, — R. = 2t < Vw(bp), ur(bo) > .

In the image planes, F,and F-, the radii are magnified by the factor 1/j so that
I/f(Ry - R) =2f < Vw(R,0),n>. (4.2)

To summarize, let Sy =1/ fTy. Then the radial displacement of the boundaries of S (8P) and S-(8P)
at apoint (R, @) is proportional to the wavefront slope at the point; and further the proportionality constant .
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is the displacement between the planes P,and P_. And in the image planes F; this proportionality constant
becomes 2tl/ f =2f. Note that the displacement depends only on the focal length and not on the position
of the image planes.

The determination of radial slope by intensity measurements of the pupil displacements at the boundary
is not a direct process. Next we will discuss how this is done in the Roddier scheme.

The Roddier scheme for estimating the radia tilt < Vw, n> is based on the observation that the
curvature signal (I, —I_)/(I;+1_) is=x1for pointsin the symmetric difference of the sets Sy (P): Points
in(S4(P)—S- (P)) U (S_(P) - S,(P)), i.e. where there is no overlap, and is strictly less than one where
there is overlap. The distance where there is no overlap is proportiona to the wavefront tilt on the boundary
as we saw above. In Fig. 3,3 the region G. is written as the union of two subregions, GO and G,. Go is
bounded by small arcs of S (6P)and S_(8P), and thus the width of Go is proportional to <Vw, n >’
Sinceit isnot a priori known what the width actually is, a parameter u is chosen as an upper bound.
is the width of the region G. < Vw, n > is estimated by averaging the observed curvature signal over the
entire region G. Obtaining an accurate estimate of < Vw, n > with this procedure relies on a small value of
the (curvature) signal in G.. (This can be enforced by choosing large 1; however this increases the size of the
imaged pupil, and thereby reduces the sensitivity of the tilt measurement since the relative displacement of

the pupil boundary is independent of 1.)

LQRAO

Y A\
G G, = nonoverlapping
/I of (Vw ) boundaries
H Gy Gi = overlapping
G boundaries

Figure 4.1. Norma Derivative Determination

i

n

Now let &w denote the estimate of < Vw, n > obtained by averaging the normalized intensity signal

over G:
~ ] ]+ == I

ow = T
2 f?]tA,G].; + 71
1 fL-L
T 2RAO LT, + 1

Partitioning G into the regionsindicated in the figure above, G =: Go | G,, and performing the integrations,
wc obtain

1+ 2fRAoziv’;’" >

w4l + 6aR(1/ F)(f2 /) AbAwW,

where éa = a—2f < Vw, n>: Hence,

dw < Vu,n > +[—6%f—w—. (4.2

Thus this estimate of the radial slope of the wavefront suffers nonlinearities when either the a priori width
of the boundary signal is underestimated or over estimated. Roddier, et a [10] discuss this nonlinearity
when the edge is underestimated. For wavefront components with zero Laplacian there is no error by
overestimating the width of the edge. However, nonlinearitics do appear for signals with nonzero Laplacians.
Thiswas observed in [1 O] when a small nonlinearity appeared for defocus even though the sensor was not
in saturation. The explanation for this follows from (4.2) where the Lapplacian term is nonzero for defocus,
but vanishes for tilt and astigmatism.

The noise characteristics of the radial slope estimate obtained in this manner are addressed in [7]. In
summary it is shown that the method has to trade the resolution by which. it can ascertain the boundary
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displacement with read and dark current noise, and ultimately these noise characteristics are inferior to those
of a Hartmann sensor.

5. Wavefront Reconstruction. The problem of wavefront reconstruction is to estimate the wavefront
across’ an aperture from sampled values. The sampled values are obtained from measurement devices such as
aHartmann sensor, a shearing interferometer, or the curvature sensor as discussed in the previous section.
It is important to note that these sensors do not provide direct information of the wavefront, but only first
or second derivative information through either the slope or curvature measurement.

The general setup of the reconstruction problem isfairly simple. Let an aperture be defined by aregion
D in aplane with boundary 8D. We will be taking D to be a square in most of the analysis to obtain some
fairly specific results, but for now we will let D be quite general. Let w(z), z € D denote the wavefront
surface. The reconstruction problem from slope measurements is to determine w(z), = € D) given a sample
of the gradient of w, Vw(z;),i=1,.... n. The problem for curvature sensing is to estimate w(z) given the
samples Aw(z;),i =1, .. ..n. For curvature sensing it is alSo nécessary to have normal gradient information
on the boundary to perform wavefront reconstruction.

For both of these reconstruction problems any constant function can be added to a solution and still
solve the system, For the purpose of error analysis it will be shown that the normalizing condition on the
reconstructed wave front, o,

> ;-0 (5.1)
(X%

leads to the minimum variance solution. This solution is also recognized as the “zero piston” solution, and
has further relevance to the wavefront correction problem [7].

For more detailed anal ysis, the reconstruction problem will be restricted to a square aperture with
regular measurements. We will assume that the squareisd x d units and there arc (N + 1)2 regularly spaced
nodes. We let h denote the mesh width, so that h = d/N. We begin with an analysis of slope measurements
in this configuration. At each mesh point indexed (i, 7) € D we assume the noisy vector slope measurement

53 &%) Vw(zi, ¥5) + 5 (5.

where
TR TR (5.3)

with 7:; zero mean for every i and j, and with constant covariance E(m%mi; ) = 0%I2x2. (The independence
of the z and y slope measurements are discussed in [5].)
The gradient Vw(z;, y;) is approximated at mesh points by the difference operator As,

(Anu)(i) - (FHL=ZE BRI (54

To develop the minimum variance estimator we write the difference operator above as

An= % I?& (5.5)

where
(A*u)(i5) = Wij41 — usj,
and
(AYu)(ig) = Uit15 — uyj.
Note that

A @imt N1 RV S @i v RY

has the (rectangular) block diagonal representation AZ =diag(A?) with A7 : RN+1 RN,

-1 1 0 ... 0

o -1 1 ... 0
A= 0

0 0 -1 1

2)



Thus A’ @i=1,8+1RY o ®i=1,n4 RN+ is aso block diagonal with blocks AZT. Hence A=T A% is block,
diagonal, with tridiagonal blocks AZ7 AF,

1 -1
-1 2 -1
A::TA:::: “. . “.. “..
0 -1 2 -1
0 0 -1 1

A similar, development follows for computing (A¥)* A¥. Here we note that

-1 1 0 ...O

o =11 ...0

A= . .

o 0 ... -1 1
where I denotesthe (N + 1) X (N +1) identity matrix. It follows then that
1 -1
-1021 0 A
AyTAy - o
o ... =l 212 -1
0o ... 0 -1 1

Since ATA= A=T A 4 A¥T A, we find that A’A is block tridiagonal

By -
-1 B -1
ATA: “.. . “.. ,
o ... -1 B -
| O . 0 —1 Bo
where Bo has the tridiagonal form
—
3
BO - HI. ul. lil. ,
o ... -1 3 -1
[0 ... 0 -1 2
and B =1+ Bo.
The reconstruction problem for slope sensing can be posed as the following minimum variance problem:
min B(|@% — w|?) (5.60)
w
subject to the constraints
E@@)=w, @ = Ky, y = Arw + 1), (5.6b)

with E(n) = O, and E(n"n) = Q, where An is defined in (5.5), y is the measurement vector in (5.2), and 5
is the noise vector from (5.3). If A has full rank the solution to this problem yields the best linear unbiased
estimator (BLUE) [25] from the measurements g, and is given as

W= (ALQT An) 1AL Q My, (5.7a)
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with resulting covariance matrix
E((w - w)( - w)") = (A7 Q71 An) 7" (5.7b)

However, it is evident that Ahasa one dimensional null space spanned by the single vector v =[1...1]7
corresponding to a piston mode. We could circumvent this difficult by formulating an equivalent (weighted)
least squares problem and derive the estimate via a pseudoinverse solution. But for deriving variance
estimates the following approach will be more illuminating. Let ¥ : RIV+11"— RN+ be any orthogonal
martix (¥TW¥ = I) such that the range of ¥ is the orthogonal complement, call it U, of the subspace spanned
by v. We now repose the problem as finding the linear minumum variance estimate in the subspace U:

min E(jd — w|?);y = Asw + 5 where w e U. (5.8)
w

‘I'his is equivalent to the problem
mgn E(¥(@-u)|?); y=AVu+q (5.9)

‘I" his reposed problem has the interpretation that we are seeking solutions to the problem where the “mean”
wavefront is zero, i.e. has zero piston. We will see a little later that the choice ¥ leads in a certain sense to
the minimum variance wavefront error solution.

The solution to (5.9) aboveis given by

@ =04, where 4= [¥TATQ 1ALV 10T 4,Q 7y, (5.10)
since W7 ATQ- ! An¥ isnow invertible. The variance of the estimate is

E(lw - 9[2) - tr{¥ [T AT Q 1ALV 19T} = tr{9TY[WT AT Q1 A, 0) 1) = tr{[3T AT Q1 A, ¥] ).
| (5.11)
Observe that since R(¥) = N(A)!, tr{[¥TATQ~1 A¥]~'} is the sum of the reciprocals of the nonzero
eigenvalues of ATQ~! A, These results arc formally stated in the theorem below.

Theorem 5.1. Let Q denote the variance of the noise term in (5.8), Q = E(nn”), and let Ah be the
difference operator defined in (5.4). ‘I’hen the minimum variance solution is given in (5.10) above, with
variance

E(lw— 9% = tr{[¥* A7 Q' An Y]}

If Qisascaar matrix, i.e., Q = o] then the variance can be expressed as
E(lu—4]*) = o®h%r{(¥* AT AV] 1

1
— 02h2z i_i,

where the Ai’s are the nonzero eigenvalues of ATA.///

We will next see how a very analogous situation develops for curvature sensing when using a 5-point
scheme discretization of the Laplacian [15]. A point to keep in mind while we develop the result below is that
it istied to this particular approximation of the Laplacian, and other options for discretization are available
for curvature sensing.

Curvature sensing produces the following sampled Laplacian and radia derivative signal:

.. int __ . slope __ _ slope
Awy; + "7:; =Yijs Vuwi; . n+- N5~ =Yy

Recall here that the noise 1 has two components; an interior component, 5™ 8ssociated with the curvature

signal, and a boundary component #5*!°7¢ associated with the measurement of the normal derivative of the
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wave front at the boundary. Discretization via the 5-point scheme leads to the difference equation in the
interior of D, ) ) ) )
dwij  wyjo1 Wiyl Wi-yg Wigay
h2
at interior points not adjacent to a boundary, and at points adjacent to the boundary either:

= Yij + %, (5.12)

2w.'j*w.~,-+ 1 Wwi4 1 j

h2

= ¥yij + %, (5.13)

for corner points, and for points not at the corner:
3w wij—1 Wwijy 1 — Wiy 1j
h?

In the adjacent cases the signal is a combination of the curvature signal and slope signal.” For example, for
points adjacent to the “north” boundary (i = 2)

= Yij + ;. (5.14)

! Wi 15— Wij
ya ope _ Jh ) + nalope.

Hence,
Wi 15 = wij+ hfy®loPe — gelore],

and consequentl y the right sides of (5.13- 5.14) contain the terms y*!°P¢/h and n#tore /.
Observe now that this discretized system has the form

AZ'Ahw+7]=y (5.15)

with Ax defined as in (5.5). After introducing the normalizing matrix ¥ for the estimation problem (5.15)
above, we abtain the curvature sensing reconstruction analogue to Theorem 5.1.

Theorem 5.2. Let Q denote the variance of the noise in (5.12-5.14) and let A,, be the difference
operator defined in (5.5). Then the minimum variance solution to (5.15) is

@ = VWAL AV T QI ITQ Yy,
with variance

E(fw — 9| = tr{[¥7 AT A,Q~ 1 AT An¥)7'}.
If Qisascalar matrix, i.e.,, Q = o2 then

W = V(T AT AR U)~ 19Ty,
and the variance can be expressed as
E(lu — 4)%) = o2h%tr {37 AT AAT AV}
- o2h4 Z 5\%’

where the Ai’s are the nonzero eigenvalues of ATA.///

There arc two distinctions between the curvature and slope sensing variance estimates. The first is the
factor of h'that appears in the curvature sensor reconstruction error, versus the factor of h*in the slope
sensing reconstruction error. The second difference is that the reconstruction in curvature reconstruction
involves the sum over the square of the reciprocals of the eigenvalues of ‘A7 A, as opposed to the reciprocals
of the eigenvalues for slope sensing. Thus we. see immediatel y that the trade between curvature and slope

19




sensing is governed by both the growth of the reciprocals of the eigenvalues of the Laplacian and the mesh
size. On sguare domains these eigenvalues can be computed analytically;

Proposition 5.3. The eigenvalues of AT A are given by

_ moo_, W) -
Ai; 4 2cosN+1 2COSN+1 1,7=0,..,N.

Proof. Recall that AT A = A=T A% + AT A¥ (see development following (5.5)), Consider the matrix

]
1 2 -1

K= ;
o ... -1 2 41
o ... 0 -1 1

and let {Ai}s, {UI },denote the sets of eigenvalues and elgcnvectors of this matrix, respectively. Denote the
oomponents of the vector u: by superscript, i.e. ui=[u},....u!T where n = N + 1. Now construct the

n°x1 vector Gik,

.

ul

u"’uk

Gik =
uiuk
Observe that
}'Kuk
L4
AT A% gy = :I : (5.16)

P Kuy

Hence, since Kuy, = Axuy, it follows that ]
AT AT = Akgix.

Observe next that
ulv —utv

AT Avg, = ~u’\/ v+ 22u v—-uJufv

1

—ul ]u+u v

But since Ku,= Aju,, it follows that
AT AV g = Nigik. (5.17)

From (5.16) and (5.17) we obtain A7 A = (A + Ax)wik.
Now K is recognized as tbe stiffness matrix obtained from n unit masses serially coupled by unit stifiness
springs unsupported at the ends. The eigenvalues of K are given by [1]

e

Ai=2 -
) 2 2COSN+1,

i=0,..,N.

It is straightforward to verify that the vectors {¢ix} are pairwise orthogonal since the set {u} isan or-
thornormal set by virtue of the symmetry of K. Hence {gix} constitute a complete set of eigenvectors for
A'A, and {Xi + A} form a complete set of eigenvalues of ATA.///

We now return to the discussion of the role of the matrix ¥ in the minimum variance solution. There
arc of course other ways of, normalizing the problem to obtain unique solutions. For example we could find
all solutions in the subspace of solutions that grounds a particular node (i.e., we require ui, j, = 0. for some
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index #ojo.) ‘I’his corresponds to selecting another matrix, say I': RIN4)*1 — pIN+1)? quch that AT
has full rank. The pertinent observation regarding any normalizing matrix T such that I'v # O is that the

associated error variance tr{I'[['7 A, Q! A,T)~1I'"} has the property that
tr{PTTATQ 1 ALT)'TT) > tr {97 AT Q1 A, 9] 1), (5.18)

i.e., the variance obtained from the normalization ¥ is a minimum. (The analogous result holds for curvature
sensing reconstruction as well. ) This result can be deduced from the minimax property [3] of the eigenvalues
of a symmetric matrix in the following way: Let I' = OR be aQR factorization of I', i.e. O is an orthogonal
matrix and R is an invertible triangular matrix. Then

tr{l'[FTATQ'AxT)” 'TT} =  +{OR[RTOTATQ~ 'A,OR|™! RTOT}
= tr{O|0T AT Q= A,O) 10T} (5.19)
= 1r{[0TATQ 'A,0]'}.

Writing ¥r to denote the estimate ‘from the normalization by I', we see from (5.19) above that the variance
of this estimate is equal to the sum of the reciprocals of the eigenvalues of OT AT Q! A,O. Now the
cigenvalues of T ATQ-1 A are precisely the nonzero cigenvalues of A7Q-1A, say {X2,.... Ay }. By the
minimax property, the eigenvalues of OT A7 QA0 X}, .. N _, satisfy ,\;cgz\k“,k =1,..N-1. Thus
(5.18) follows.

The variances obtained by different normalizations actually have a simple relationship. Recall that the
matrix ¥ ensures that the associated estimate wy has the “zero piston” property

<y,v>=0, wherev=[1...1)7,

Zwu = 0)
LY
where i3 denotes the components of . Although (5.18) holds for any normalization, it can be shown that
E{ldr -wrl? - (< 8,9r - wr >} = E(ldy - wel?),

where wy denotes the estimate from using the normalization ¥ [7], What this result says then is that the
variance from any normalization of the problem is equa to the variance of any other normalization after the
error due to the piston component is removed.

6. Comparison of Curvature Sensing and Hartmann Sensing Reconstruction Error. Theo-
rems 5.1 and 5.2 together with Proposition 5.3 allow us to make. comparisons between reconstruction error
for curvature and slope sensing methods. (For slope sensing we will assume a Hartmann array.) In the case
of a square aperture equipped with an N x N array of subapertures, the covariance matrix ¥ for either
curvature or Hartmann sensing is related to the eigenvalues { Ay }xi of AT A as given in Proposition 5.3.
Taking for example, N = 10 and h = 1 m, for the Hartmann sensor we calculate

1
ir(y e) = 2 . -—
T( slop ) O slop Ek.,: ’\kl

= 67.3025pe

and for the curvature sensor

1
tr(Xcurve) = U?:urve Z N
kJd kl

= 274502

curve?)
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where a,,m denotes the variance of the Hartmann sensor measurement and o2,,.,. denotes the variance of
the curvature sensor measurement. For the Hartmann array where the centroiding is done. by a quadecell

Sensor,
37"Alaceing

o N ——
slope 16\/17 ‘

where A isthe wavelength, seeing is a variance correction factor given by the Y ura approximation for short
exposure spot size diameter [9], [19],

I,u;,.g:\/ 1 + (h/ro)?[1 - -37(re/h)¥/3), 70 = coherence length, h=subaperture size,

and v is the number of photons per subaperture. Using the values A= .8x 107 m, h=1m, and ro = .3
m we get

1.23X10°¢
RMSalope =T_~

And using the previous values, j = 150m, and 1 = .05m from Section 3 to characterize ocyrve, We Obtain the
rms estimation error with curvature sensor

3.68 x10°

Hence, the rms estimation error for curvature sensing for this array is approximately three times larger than
for the Hartmann sensor.

We compared reconstruction errors for various array sizeswith N =5, 10, 20, and 40 corresponding to
mesh widthsof h=2m, 1 m, .5 m, and .25 m, respectively. These results are contained in the table below.

RMScurve :

Table 6.1. Curvature vs. Slope Sensing Reconstruction

h 25 5 1.0 2.0
Hartmann 5.84 x 10’ 7.87 X 107 1.23x10° 2.13x 10-6
Curvature 9.07 x 10~ 1.82 X 10~ 3.68x10° 7.60 X 108

These results are contrary to what has been reported in the literature regarding the accuracy of curvature
sensing and reconstruction ([1 O], [13], [14]). What is observed in the table above is that the curvature sensor
compares more favorably with the Hartmann sensor as the resolution increases. The trade that occurs
between the two sensing methods is that although reconstruction error from the Laplacian measurement
grows more rapidly than the reconstruction error from gradient measurements, this effect is mitigated by
the property that the Laplacian is a higher accuracy measurement (O(h?) versus O(h).) These trades are
made more clear below.

Asymptotic estimates for the estimation error can be developed using the characterization of the eigen-
values in Proposition 5.3. For large N we have the approximation

k. wl wHk?+ %)
4—2cos————]\]_+_1 —SZco.sN_*Fl R N+ 1)
Hence,
1 Qi 1
SV N‘H) 7 L 2’
Xk:)\ kl:l"(k +1)
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and
E 1 4
- )21"'(N+1) ~L,7 (KIT+ 17)7 '

These sums can be approximated as
>3-~ ON'10N)),
% A

and

From these approximations we obtain asymptotic estimates of the surface reconstruction error for slope
sensing and curvature sensing:

Theorem 6.1. Let d = length of a square aperture, and let & denote the mesh size. Then for large
d/h, the following asymptotic reconstruction error estimates are obtained for slope sensing and curvature

sensing, respectively: L
RMSalopeaalope Viog(d/h),

and
RM S urve = hocuryed.

Previous analysis of the effect of reconstruction on slope vs. curvature sensing focuses on the noise
propagation properties, and essentially fixes the mesh size h while increasing the aperture sized [10},[13],
[14]. As dincreases (with h fixed) it is seen that the RM S,,pe grows logarithmically and RM Scurve grows
linearly as reported in these references. The error propagates differently, however, if wc fix the aperture size
and decrease the mesh size. Since for h <70

3 1

Oslope = 16h \/l_/’
and
l 1
Ocurve = 75— 7
2
where v again denotes the number of coliected photons, wc find that
3nA — ]
RMS,zope = _ﬁ vV lOg(d/h)'y_;,
and Ihd_
I
Thus we see that curvature sensing may actually be superior to Harmann sensing when the subaperture

diameters must be small. (Such a circumstance is envisioned for the dense segmented primary mirror of the
SELENE telescope [18].)

RMScuruc =
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